
December 2014 Features Update

Table of Contents
Global.........................................................................................................................................................3
Family Tree Enhancements........................................................................................................................5
Census Database Enhancements................................................................................................................9
Vital Statistics Enhancements..................................................................................................................11
Bug Fixes.................................................................................................................................................13

Page 1



Illustration Index
Illustration 1: Editing with Preferred Events.............................................................................................5
Illustration 2: Split Screen Census Transcription Editing..........................................................................9

Page 2



Global
Although the functional changes this month are not dramatic almost every single file in the site has 
been changed, particularly to increase the consistency with which different classes perform similar 
functionality.  This makes the implementation easier to follow and avoids potential future programming
mistakes.

The database layout that I borrowed from the Legacy Family Tree application on Windows while 
functional had some features that are problematic on a shared service.  I used it because Legacy on 
Windows could import family tree files from a number of other genealogy products, in particular 
Family Tree Maker, and the database design was available from the vendor.  So I could use Legacy to 
transform genealogy data from multiple sources into a common form that I could export to the web 
server.  Legacy on Windows was useful for this because unlike some other products it used a relational 
database supporting Structured Query Language (SQL), in this case Microsoft Access, to record the 
information.  It was therefore easy to mechanically translate the Legacy on Windows database to a 
different database manager, MySQL, which could be run on a web server. 

In designing a relational database it is recommended that the record structure be normalized.  
Normalization is a systematic way of ensuring that a database structure is suitable for general-purpose 
querying and free of certain undesirable characteristics, insertion, update, and deletion anomalies, that 
could lead to a loss of data integrity.  In a fully normalized design each unit of information exists in 
only one place in the database, so changing that information can be done as a simple operation.  If the 
information exists in multiple places then the possibility exists that only some of the locations are 
changed by an update, creating a situation where multiple different values exist for the same unit of 
information.  This was not an issue for the original implementors of Legacy Family Tree on Windows 
because their application only supported a single user, whereas a web site based solution needs to 
consider simultaneous updates by multiple users.

As a specific example the main name and primary birth date are recorded in the basic record for an 
individual, an instance of LegacyIndiv, in each family record to which that individual belongs, 
instances of LegacyFamily, and in the primary name record for the individual, an instance of 
LegacyName.  Also the married name of an individual is present both in the family record for the 
marriage, an instance of LegacyFamily, and in a married name record, an instance of 
LegacyName.  The name information is therefore moved to exist exclusively in the LegacyName 
record, although it can be logically accessed through either the LegacyIndiv or LegacyFamily 
record using existing methods.

Similarly information about facts and events is in general recorded in the table of events, as instances 
of LegacyEvent.  However some events, such as the primary birth event and the primary death 
event, are recorded in the instance of LegacyIndiv, while a marriage event is recorded in an 
instance of LegacyFamily, and an LDS sealed to parents event is recorded in an instance of 
LegacyChild.  However secondary versions of the birth, death, marriage and other events are 
recorded in instances of LegacyEvent.  Some events, such as adoption, do not even have a 
legitimate method to be recorded in this design since an instance of LegacyEvent must be associated
with either an instance of LegacyIndiv or an instance of LegacyFamily, but an adoption should 
be associated with an instance of LegacyChild, since that record identifies both an individual and 
the family in which that individual is a child, and an adoption must be associated both with the 

Page 3



individual and the adoptive parents.  Therefore all fact and event information is now recorded in 
instances of LegacyEvent, which may also be associated with an instance of LegacyChild, 
providing support of adoption and LDS sealed to parents events.

There are 4 textual notes in LegacyIndiv and one in LegacyFamily that can have citations.  In the 
future those will be represented by separate instances of a new class LegacyNote.  This will also 
permit modeling more completely the implementation of textual notes in the industry standard 
Genealogical Data Communication file transfer format (GEDCOM 5.5).  GEDCOM 5.5 permits more 
than one note of a particular class associated with an entity in the family tree which, among other 
advantages, permits each note to have separate citations.  Most user interfaces provided by genealogy 
applications do not actually support multiple notes of a particular class because that would complicate 
the user interface and make the application harder to use.

This restructuring significantly simplifies the implementation of a source citation, represented by an 
instance of LegacyCitation.  In the original implementation each instance of LegacyCitation 
contains a field `Type` which in addition to identifying the type of record containing the fact or event, 
also identifies which fact or event within the associated record the citation applies to.  For example 
there are 8 different events and 5 different facts within an LegacyIndiv instance alone that can have 
citations, including the birth event and the primary name of the individual.  Moving all of the events in 
LegacyIndiv, LegacyFamily, and LegacyChild into instances of LegacyEvent, 
recognizing that the primary name is already unnecessarily duplicated from the primary instance of 
LegacyName for the individual, which can already have citations, and adding the proposed 
LegacyNote class, leaves no remaining facts in the LegacyIndiv record, and only two flags in 
LegacyFamily, and three status fields in LegacyChild that require being distinguished.

The script confirmUserXml.php, which is invoked when a new user clicks on the link in the 
confirmation e-mail, is updated to output diagnostic information when requested by the debug option to
the variable $warn, and to include that diagnostic information in the XML response to Javascript.

The script deleteUser.php, which is used by the administrator to manually delete a registered 
user, is updated to output diagnostic information when requested by the debug option to the variable 
$warn, and to include that diagnostic information in the XML response to Javascript.

Page 4



Family Tree Enhancements
The handling of events in the page editIndiv.php has been extensively rewritten.  The key driver 
for this was to make the function of the “Reorder Events by Date” button much faster.  This button now
updates the display, and the events are not reordered in the database until you save the individual.  
Since the primary events for an individual are being moved the handling of these events is now the 
same whether they are actually stored inside the instance of LegacyIndiv or in separate instances of 
LegacyEvent.  This means that the instance of LegacyEvent now distinguishes between the 
preferred version of each event, and any other instances by means of a “Preferred” flag.

You cannot click on the “Preferred” check-box to turn the flag off, because that would leave no 
preferred instance of the class of events.  However if there are multiple instances of a particular event 
type, for example multiple birth events, then you can click on the unchecked check-box of another 
instance and make it the preferred instance.

Classes LegacyAddress, LegacyChild, LegacyCitation, LegacyDontMergeEntry, 
LegacyEvent, LegacyFamily, LegacyHeader, LegacyIndiv, LegacyLocation, 
LegacyName, LegacyPicture, LegacySource, LegacySurname, and LegacyTemple are 
changed to redirect diagnostic information to $warn.

The functionality of ensuring that the names and birth dates of the spouses in a family match the names
and birth dates in the associated LegacyIndiv, LegacyEvent and LegacyName records is 
moved to LegacyFamily::__construct.  Through database normalization the only authoritative
copy of the primary name of the individual is not in the instance of LegacyName identified by 

Page 5

Illustration 1: Editing with Preferred Events



Order 0.  The only authoritative version of the primary birth date of the individual is in the preferred 
instance of LegacyEvent with event type 'birth'.

The method LegacyChild::getParSealEvent is added so that the information about the LDS 
sealed to parents event in the LegacyChild record can be managed as an instance of 
LegacyEvent.  The existing fields 'parseald', 'parsealsd', 'idtrparseal', 
'parsealnote', and 'ldsp' are deprecated and should not be accessed using 
LegacyChild::getField, but rather as the 'eventd', 'eventsd', 'idlrevent',  'desc', and 
'ldstempleready' fields of the instance of LegacyEvent returned by LegacyChild:: 
getParSealEvent.

The constructor for the class LegacyEvent is enhanced to support the LDS sealed to parents event.  
Instances of LegacyEvent may now be associated with instances of LegacyChild to support the 
LDS sealed to parents event, and the adoption event.

The method LegacyEvent::getDate now accepts a privacy year limit parameter.

The class LegacyFamily adds a method LegacyFamily::getSealEvent which permits 
accessing the LDS sealed to spouse event as an instance of LegacyEvent.   The existing fields 
'seald', 'sealsd', 'idtrseal', 'sealnote', and 'ldss' are deprecated and should not be accessed 
using LegacyFamily::getField, but rather as the 'eventd', 'eventsd', 'idlrevent',  
'desc', and 'ldstempleready' fields of the instance of LegacyEvent returned by 
LegacyFamily:: getSealEvent.

For improved performance references to the instances of LegacyIndiv for the two spouses are kept 
in the LegacyFamily instance.

Additional diagnostic output is generated by LegacyFamily::__construct.

The static method LegacyFamily::getFamilies now supports the limit and offset parameters 
for consistency with other classes.  The associative array returned by this method is now indexed by the
key IDMR.  The method now takes a third parameter which, if true, results in XML output being 
generated if this method is called from a script that produces XML.

The LegacyIndiv methods to get preferred instances of LegacyEvent now uses the associative 
array of parameters method to invoke the constructor for LegacyEvent to make the code easier to 
maintain and understand.

The class LegacySource has added a method LegacySource::getCitations which 
provides an associative list of instances of LegacyCitation that reference this instance of 
LegacySource.

If the browser is pointed at the folder /FamilyTree/testscripts on the site the browser is 
redirected to display the menu of test scripts if the current user is an administrator, or else an error 
message, instead of the contents of the folder.

The script addCitXml.php which is invoked by Javascript on the browser to add a citation to a fact 
or event is enhanced to ignore zero length parameter values.  Its invocation of LegacyName:: 
getNames is changed because the function signature has changed to permit feeding back the number 
of matching names.

Page 6



The script mergeUpdIndivid.php is changed because the method LegacyIndiv:: 
getFamilies now returns an associative array indexed by IDMR.

The script orderMarriagesByDate.php is renamed to orderMarriagesByDateXml.php.  
It is enhanced to validate that the IDIR parameter passed to it is numeric and greater than 0.

The script mergeIndivid.php is enhanced to pass the debug flag to the script 
mergeUpdIndivid.php.

The script editMarriages.php is changed because the method LegacyIndiv:: 
getFamilies now returns an associative array indexed by IDMR.

The script editParents.php is changed because the method LegacyIndiv::getParents 
now returns an associative array indexed by IDMR.

The script editEvents.php is changed to add a row number parameter to the eventFeedback 
method of the invoking form.

The script editIndivid.php is significantly changed to support the new model of events.  All 
events and facts now have the same layout, with the exception of the names for the date, location, and 
description field which are different for some events in order to display field specific popup 
documentation, and induce the browser auto-complete functionality to treat them distinctly.  Each row 
now has the following additional fields, most of which are hidden from the user if the debug option is 
not specified:

• checkbox for preferred status

• the IDER value (which is zero for events that are still in LegacyIndiv)

• the IDET value

• the citation type (usually 30)

• the order in which the events are displayed

• the sorting form of the event date (so browser resident code can reorder the events)

• the event changed indicator

The script deleteSourceXml.php is enhanced to ignore a request to delete any master source that 
still has citations referencing it.  The script that invokes this does not provide a delete button, but I 
always believe in the value of both a belt and suspenders.

The script descendantReport.php is changed because the method LegacyIndiv:: 
getFamilies now returns an associative array indexed by IDMR.

The script ancestorReport.php is changed because the method LegacyIndiv:: 
getParents now returns an associative array indexed by IDMR.

The script legacyIndivid.php, which displays the main page for an individual, is changed to 
always use LegacyIndiv::getBirthEvent and LegacyIndiv::getDeathEvent to get 
the birth and date information to display, particularly in the title of the page. The script is also changed 
because the methods  LegacyIndiv::getFamilies and LegacyIndiv::getParents now 

Page 7



return an associative array indexed by IDMR.  The script also now handles an exception thrown if the 
wife's IDIR was invalid.

The script getIndivSvg.php which displays a graphical family tree is substantially rewritten.  The 
use of deprecated methods of LegacyFamily is brought up to date.  The XML and PHP code is 
separated, which makes the implementation easier to maintain.  Unique id attribute values are now 
supplied for all SVG elements.  Error messages, for example to report bad parameters to the script, are 
now displayed in bold red text.  A title is not displayed for the page including the name and dates of the
key individual.

The script getFamilyOfXml.php is changed because the method LegacyIndiv:: 
getFamilies now returns an associative array indexed by IDMR.  It is also changed to use 
LegacyIndiv::getBirthEvent to get birth information.

The script deleteNameXml.php, used to delete an instance of LegacyName from the database, is 
enhanced to ignore a request to delete a primary name record if the associated instance of 
LegacyIndiv is still present, or a married name record if the associated instance of 
LegacyFamily is still present in the database. 

The script addFamilyOfXml.php is changed to use LegacyIndiv::getBirthEvent to get 
birth information.

The script addDontMergeXml.php is changed to include the actual SQL command used to update 
the database, and the contents of the inserted record in the response.

The script detChildXml.php, which permits browser code to delete an instance of LegacyChild
from the database, is changed to perform additional parameter validation, to include the contents of the 
child record being deleted, include the actual SQL command used to update the database, and include 
diagnostic messages if present as a result of the debug option.

The script orderEventsByDate.php is obsolete and no longer performs any function.

The script GedcomUpdate.php is not yet functional, but it has been updated to use current 
interfaces to the various classes.

The script updateEvent.php, which is used by browser code to update an event record in the 
database, is changed to use LegacyIndiv::getBirthEvent to get birth information.

The script getIndivNamesXml.php, which is used by browser code to get information to populate 
selection lists of individuals, is changed to use LegacyIndiv::getBirthEvent to get birth 
information.  It also now handles an exception thrown by LegacyFamily for a bad spouse IDIR 
value.

The browser script locationCommon.js, which provides automatic completion assistance for 
fields containing values that map to instances of LegacyLocation,  is enhanced to support any field
whose name contains the text 'Location'.

Page 8



Census Database Enhancements
In the past when you clicked on the button to display the original census image, a new window was 
opened to display the image.  This then required that the user rearrange and resize the two windows in 
order to take advantage of the full screen space available.  Through years of experimentation I have 
found that the most efficient way to transcribe censuses is a column at a time, with the screen split with
the input form using one half of the screen and the original image using the other half of the screen, 
side by side.  The implementation of the display image button is therefore changed to facilitate this.  
Just make the census window full screen, and clicking on the display image button splits the screen for 
you into left and right halves.

Classes CensusLine, District, Pages, and SubDistrict are changed to redirect diagnostic 
information to $warn.

The implementation of the class District is changed to improve the clarity of the implementation of
District::getField, improve the clarity of the implementation of District::setField, 
and improve the efficiency of District::getSubDistricts by saving the previously obtained 
value, so subsequent calls do not require accessing the database.  Methods 
District::getSdCount and District::getFCount are removed.  The information these 
methods returned is still available through District::getField with field names 'd_sdcount' 
and 'd_fcount' and these two methods were unused.

The implementation of the class SubDistrict, representing a single enumeration division, is 
enhanced.  If an instance of District is passed to the constructor then the census identifier from that

Page 9

Illustration 2: Split Screen Census Transcription Editing



instance is used.  A new method SubDistrict::getPages is added to obtain an array of instances
of Page for the sub-district.

The implementation of the class Page, representing a single page from a census, is enhanced.  The 
constructor now accepts an associative array of parameters, while remaining backwards compatible.  
Invoking the constructor using an associative array makes the invocation more self-explanatory.  A 
static method Page::getPages is added to encapsulate obtaining an array of instances of Page.

If the browser is pointed at the folder /database on the site the browser is redirected to display the 
menu of censuses of Canada instead of the contents of the folder. 

If the browser is pointed at the folder /database/testscripts on the site the browser is 
redirected to display the menu of test scripts if the current user is an administrator, or else an error 
message, instead of the contents of the folder. 

Page 10



Vital Statistics Enhancements
Classes Birth, County, Death, Marriage, MarriageParticipant, and Township are 
changed to redirect diagnostic information to $warn.

The table recording information about Counties is changed to remove the column Prov which is 
redundant since the same information is contained in the column Domain.  To ensure no loss of 
functionality in code which uses the class County the method County::getField returns the 
correct value derived from the column Domain.  The static method County::getCounties is 
changed to conform to the behavior of similar methods in other classes by accepting the parameters 
limit and offset on input and return the count of matching rows in the 'count' field of the 
parameter array.

All of the pages on the site that are specific to Canada, with the exception of the pages that apply only 
to Ontario and for censuses, are moved to a new folder /Canada.  This includes the pages 
genCanMilitary.html, genCanCom.html, genBritCol.html, and 
genManitoba.html.  For provinces that do not have a specific page of links a generic page, created
by the new script /Canada/genProvince.php, is implemented to provide the ability to transcribe
and search vital statistics records for those provinces.

The pages on the site that are specific to the United States of America are now all moved to the folder
/USA.

The scripts BirthRegDetail.php, BirthRegStats.php, BirthRegQuery.php, 
BirthRegResponse.php, and BirthRegUpdate.php are enhanced to support displaying and 
updating the transcriptions of birth registrations for all provinces, and are consequently moved from the
/Ontario folder to the /Canada folder.  The former page BirthRegQuery.html, which only 
supported Ontario, is replaced by BirthRegQuery.php?domain=CAON which generates a query 
page specific to any defined domain.

MarriageRegDetailLib.php is changed to use LegacyIndiv::getBirthEvent and 
getDeathEvent because those events are no longer always present within the instance of 
LegacyIndiv.

If the browser is pointed at the folder /Canada on the site the browser is redirected to display the 
menu of services for Canada instead of the contents of the folder.  If the browser is pointed at the folder
/USA on the site the browser is redirected to display the menu of services for the United States of 
America instead of the contents of the folder.  If the browser is pointed at the folder /Ontario on the 
site the browser is redirected to display the menu of services for Ontario instead of the contents of the 
folder.

If the browser is pointed at the folder /Ontario/testscripts on the site the browser is redirected 
to display the menu of test scripts if the current user is an administrator, or else an error message, 
instead of the contents of the folder. 

The response from the script deleteDeathRegXml.php now includes the number of records 
deleted.  This is 1 if the parameters identified an existing record, or 0 if there was no existing record.

When a user submits updates to the transcription of a birth or death registration and there are no error 

Page 11



messages or debugging output to display to the user, the form to update the next sequential birth or 
death registration is displayed instead of a dialog asking the user what to do next.  This facilitates 
transcribing a series of birth or death registrations.

Page 12



Bug Fixes
• Method Record::dump did not correctly encode the values of text fields for the case where it

was called to generate debugging information in an XML document.

• The method LegacyIndiv::getEvents failed if called for a new instance before it was 
associated with a record in the database.

• The method LegacyEvent::delete did not pass the second parameter to the method 
LegacyCitation::deleteCitations.  This meant that information about the deletion 
of citations associated with an event did not appear in the XML output of the script 
FamilyTree/deleteEventXml.php.

• The static method LegacyIndiv::getWhere generated a syntactically invalid WHERE 
clause if invoked with both the IDIR and limit parameters.

• The static method LegacyIndiv::getIndivs returned a count of 0 if it was invoked with 
an IDIR parameter and limit set to 0.  It now returns $parms['count']=1 if the supplied 
IDIR exists in the database and 0 if it does not.

• When adding early childhood events, such as christening, they were added after all midlife 
events, rather than between birth and the first midlife event by the methods 
LegacyIndiv::getBaptismEvent,LegacyIndiv::getConfirmationEvent,L
egacyIndiv::getInitiatoryEvent,and LegacyIndiv:: 
getChristeningEvent.

• In the output of LegacyLocation::dump the label was incomplete.

• The constructor LegacyLocation::__construct called itself if invoked with an 
associative array of parameters.

• The exception thrown by the static method LegacyPicture::getPictures identified the
wrong method name.

• There was an invalid operator in the SQL generated by the script orderChildrenXml.php.
It is fixed, but this script is no longer used because events are now reordered only by 
updateIndividXml.php.

• The global $debug was not declared in function getDateAndLocation in script 
editEvent.php.

• There was a missing parameter to LegacyTemple::getTemples in script 
editEvent.php.

•

Page 13


